miércoles, 2 de diciembre de 2009

VIDEOS

VIDEOS DE TERMODINAMICA,MOTOR ELECTRICO Y CICLO DE CARNOT

http://www.youtube.com/watch?v=i
http://www.youtube.com/watch?v=J8k22WqJiSY&feature=channel
http://www.youtube.com/watch?v=Au6vtu4qGrE&feature=relatedkgLd6_SYt0&feature=related

martes, 1 de diciembre de 2009

LEY DE BIOT SABARAT

LEY DE BIOT SABARAT

POCO DESPUES DE QUE OESTED DESCUBRIERA EN 1891, QUE LA AGUJA DE UNA BRUJULA ERA DESVIADA POR UN CONDUCTOR QUE CONDUCIA CORRIENTE, JEAN BAPTISTE,BIOT Y FELIX SAVARAT INFORMARON QUE UN CONDUCTOR QUE CONDUCE UNA CORRIENTE ESTABLE EJERCIA UNA FUERZA SOBRE UN IMAN.
APARTE DE SUS RESULTADOS EXPERIMENTALES BIOT Y SAVARAT LLEGARONA A UNA EXPRECION QUE BRINDA EL CAMPO MAGNETICO EN ALGUN PUNTO EN EL ESPACIO EN TERMINOS DE LA CORRIENTE QUE PRODUCE EL CAMPO.
LA LEY DE BIOT-SAVARAT ESTABLECE QUE SI UN ALAMBRE CONDUCE UNA CORRIENTE ESTABLE Y EL CAMPO MAGNETICO DB EN UN PUNTO P ASOCIADO A UN ELEMENTO DEL ALAMBRE DS TIENEN LAS SIG. PROPIEDADES.

EL CAMPO MAGNETICO DE EN UN PUNTO P DEBIDO A UN ELEMENTO DE CORRIENTE DS ESTA DADO POR LA LEY DE BIOT-SAVARAT.
EL CAMPO APUNTA HACIA AFUERA DE LA PAGINA EN P Y HACIA ADENTRO DE LA MISMA EN P´.


PROPIEDADES DEL CAMPO MAGNETICOCREADO POR UNA CORRIENTE ELECTRICA:

°EL VECTOR DB ES PERPENDICULAR TANTO A DS (QUE ES UN VECTOR QUE TIENE UNIDADES DE LONGITUD Y ESTA EN DIRECCION DE LA CORRIENTE) COMO DEL VECTOR UNITARIO DIRIGIDO DEL ELEMENTO AL PUNTO ¨P¨.

°LA MAGNITUD DE DB ES INVERSAMENTE PROPORCIONAL A R^2, DONDE R ES LA DISTANCIA DEL ELEMENTO A P.

°LA MAGNITUD DE DB ES PROPORCIONAL ALA CORRIENTE Y ALA LONGITUD DE S DEL VECTOR.

°LA MAGNITUD DE DS ES PROPORCIONAL AL SEN DEL ANG DONDE TETA ES EL ANGULO ENTRE LOS VECTORES DS Y R.

DB=KM(IDS X R)/R^2.

KM ES UNA CONSTANTE Y ES EXACTAMENTE 10^-7 T (M/A): ESTA CONSTANTE SUELE ESCRIBIRSE M0/4Pii , DONDE LA M0 E SUNA CONSTANTE CONOCIDA COMO PERMEABILIDAD MAGNETICA O DEL ESPACIO LIBRE.

M0= 4PiiX10^-7 T (M/A)


DB= (M0/4Pii) (IDS X R/R^2)

ES IMPORTANTE OBSERVAR QUE LA LEY DE BIOT-SAVARAT PROPORCIONA EL CAMPO MAGNETICO EN UN PUNTO SOLO PARA UN PEQUEÑO ELEMENTO DEL CONDUCTOR. PARA ENCONTRAR EL CAMPO MAGNETICO TOTAL DE B.

lunes, 30 de noviembre de 2009

ETAPAS DEL CICLO DE CARNOT

LA MAQUINA DE CARNOT

LA MAQUINA DE CARNOT

La máquina de Carnot puede pensarse como un cilindro con un pistón y una biela que convierte el movimiento lineal del pistón en movimiento circular. El cilindro contiene una cierta cantidad de un gas ideal y la máquina funciona intercambiando calor entre dos fuentes de temperaturas constantes T1 <>
•La representación gráfica del ciclo de Carnot en un diagrama p-V (presión en función del volumen) es el siguiente





















•Tramo A-B isoterma a la temperatura T1
•Tramo B-C adiabática
•Tramo C-D isoterma a la temperatura T2
•Tramo D-A adiabática


LA MAQUINA DE CARNOT

•reversible. El ciclo se completa con una expansión y una compresión adiabáticas, es decir, sin intercambio de calor, que son también procesos reversibles. Trabaja absorbiendo una cantidad de calor Q1 de la fuente de alta temperatura y cede un calor Q2 a la de baja temperatura produciendo un trabajo sobre el exterior. El rendimiento viene definido, como en todo ciclo, por


•y, como se verá adelante, es mayor que cualquier máquina que funcione cíclicamente entre las mismas fuentes de temperatura.
•Como todos los procesos que tienen lugar en el ciclo ideal son reversibles, el ciclo puede invertirse. Entonces la máquina absorbe calor de la fuente fría y cede calor a la fuente caliente, teniendo que suministrar trabajo a la máquina. Si el objetivo de esta máquina es extraer calor de la fuente fría se denomina máquina frigorífica, y si es aportar calor a la fuente caliente bomba de calor.
•La máquina de Carnot puede pensarse como un cilindro con un pistón y una biela que convierte el movimiento lineal del pistón en movimiento circular. El cilindro contiene una cierta cantidad de un gas ideal y la máquina funciona intercambiando calor entre dos fuentes de temperaturas constantes T1 < T2. Las transferencias de calor entre las fuentes y el gas del cilindro se hace isotérmicamante, es decir, manteniendo la temperatura constante lo cual hace que esa parte del proceso sea


CICLO DE CARNOT



CICLO DE CARNOT





En 1824 el ingeniero francés Sadi Carnot estudió la eficiencia de las diferentes máquinas térmicas que trabajan transfiriendo calor de una fuente de calor a otra y concluyó que las más eficientes son las que funcionan de manera reversible. Para ello diseñó una máquina térmica totalmente reversible que funciona entre dos fuentes de calor de temperaturas fijas. Esta máquina se conoce como la máquina de Carnot y su funcionamiento se llama el ciclo de Carnot.


El Ciclo llamado de Carnot es un ciclo reversible que consta de cuatro tramos: dos a temperatura constante (dos procesos isotérmicos), y otros dos sin absorción ni
cesión de calor (dos procesos adiabáticos). Es decir, se trata de una transformación bitérmica (entre dos temperaturas).tal como se muestra a continuación:














POTENCIALES MAGNETICOS

POTENCIALES MAGNETICOS ESCALARES Y VECTORIALES

La solución de problemas de campos electroestáticos resulta bastante simplificada con la utilización del potencial electroestático escalar . Aunque este potencial posee un significado físico muy real, matemáticamente no es más que un escalón que permite resolver un problema en varios pasos más pequeños. Dada una configuración de carga, primero se encuentra el potencial y entonces a partir de este la intensidad del campo eléctrico.

El potencial escalar magnético puede usarse para el cálculo del campo magnético causado ya sea por circuitos que conducen corriente o por capas dobles magnéticas (capas de dipolos). [4]
El potencial magnético escalar, el cual se designa como de cuyo gradiente se obtiene la intensidad de campo magnético (H),

las dimensiones de son en amperes.
Sin embargo, el rotacional del gradiente de cualquier escalar es igual a cero. Si se define como el gradiente de un potencial magnético escalar, la densidad de corriente debe ser cero a través de la región en la cual el potencial magnético escalar esta definido de la siguiente manera.

El vector potencial magnético, es uno de los más útiles en la radiación de antenas, de aperturas y dispersión de líneas de transmisión, guías de ondas y hornos de microondas.

domingo, 29 de noviembre de 2009

IMAJENES



POTENCIALES MAGNETICOS

POTENCIALES MAGNETICOS

El potencial escalar magnético es una herramienta útil para describir el campo magnético. Está definido solo en regiones del espacio donde no hay corrientes, y cuando eso ocurre es matemáticamente análogo al potencial eléctrico en electrostática, por lo que se emplea para resolver problemas de magnetostática. El potencial escalar magnético se define con la ecuación:








Aplicando la ley de Ampère a esta definición, se obtiene:







Como el campo magnético es solenoidal, se obtiene la ecuación de Laplace para el potencial:







DENSIDAD DE FLUJO MAGNETICO






Densidad de flujo magnético



La densidad de flujo magnético, visualmente notada como B, es el flujo magnético por unidad de área de una sección normal a la dirección del flujo, y es igual a la intensidad del campo magnético.
La unidad de la densidad en el Sistema Internacional de Unidades es el Tesla.



Está dado por:



donde B es la densidad del flujo magnético generado por una carga q que se mueve a una velocidad v a una distancia r de la carga, y ur es el vector unitario que une la carga con el punto donde se mide B (el punto r).



o bien



donde B es la densidad del flujo magnético generado por un conductor por el cual pasa una corriente I, a una distancia r.



Este campo B también se llama inducción magnética.



La fórmula de esta definición se llama Ley de Biot-Savart, y es en magnetismo la “equivalente” a la Ley de Coulomb de la electrostática: Sirve para calcular fuerzas de atracción-repulsión entre conductores atravesados por corrientes de carga.



El campo inducción, B, o densidad de flujo magnético (los tres nombres son equivalentes) es incluso mas importante en electromagnetismo que el propio campo magnetico H, y aparece en las ecuaciones de Maxwell con mayor relevancia que este.



Ecuaciones de Maxwell



Las ecuaciones de Maxwell son las ecuaciones que describen los fenómenos electromagnéticos. La gran contribución de James Clerk Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss, Ampere, Faraday y otros, introduciendo los conceptos de campo y corriente de desplazamiento, y unificando los campos eléctricos y magnéticos en un solo concepto: el campo electromagnético. De las ecuaciones de Maxwell se desprende la existencia de ondas electromagnéticas propagándose con velocidad vf:



El valor numérico de esta cantidad, que depende del medio material, coincide con el valor de la velocidad de la luz en dicho medio, con lo cual Maxwell identificó la luz con una onda electromagnética, unificando la óptica con el electromagnetismo.

IMAJENES DE FLUJO MAGNETICO







jueves, 26 de noviembre de 2009

LEY DE AMPARE DE LOS CIRCUITOS Y APLICACIONES

LEY DE AMPERE DE LOS CIRCUITOS Y APLICACIONES


En física del magnetismo, la ley de Ampère, la cual se basó en una memoria de seis páginas de Hans Christian Oersted, relaciona un campo magnético estático con la causa que la produce, es decir, una corriente eléctrica estacionaria. Es análoga a ley de Gauss.


Básicamente, la ley de Ampère se emplea para el cálculo de los campos magnéticos de determinado circuito dado, atendiendo a ello mediante constantes, por lo que su formula es : Σ BIIΔ l = μ0 ΣI donde ΣI es la corriente neta, Δ l es la distancia recorrida, BII el campo magnético generado y Σ BII Δl es la suma de ambos, además de que μ0 es igual a 4 π x 10-7 T (teslas) x metro/ A (amperes) (T x m/A), la constante de permeabilidad en el vacío, de aquel campo será B= μ0 I/ 2πr.



FORMULAS:






CAMPOS MAGNETOSTATICOS

CAMPOS MAGNETOSTATICOS









Antes de analizar la influencia de los campos magnéticos en los tejidos vivos, es necesario hacer una distinción previa entre los campos electromagnéticos, como los que emiten las emisoras de radio y televisión (y también un enrollado de alambre por el que circula una corriente alterna) y los campos magnetostáticos asociados a los imanes permanentes.

La diferencia esencial consiste en que los campos magnéticos variables en el tiempo siempre tienen asociado un campo eléctrico, también variable, junto con el cual forman una onda electromagnética. La onda electromagnética es capaz de propagarse y transportar o energía en una dirección determinada, y es común utilizar el término radiación electromagnética para referirse a este fenómeno. La radiación se propaga en forma similar a las ondas que se forman cuando se agita la superficie del agua, pero en este caso lo que oscila son los campos eléctrico y magnético en vez de agua. La radiación electromagnética se caracteriza por una serie de parámetros como su amplitud (una medida de la intensidad) y su frecuencia. Esta última puede definirse cómo el número de veces por segundo que oscilan o cambian de dirección los campos eléctrico y magnético que forman la onda. La frecuencia está asociada a la energía que la onda es capaz de transportar y entregar al interaccionar con la sustancia. La luz ordinaria también posee propiedades de onda electromagnética, y se diferencia de las ondas de radio únicamente en su mayor frecuencia.

Los campos magnéticos estáticos (o magnetostáticos) asociados a un imán permanente no tienen asociado un campo eléctrico y no son capaces de generar radiación electromagnética. Las fuerzas magnéticas generadas por estos campos dependen exclusivamente de la posición; son conservativas, y el trabajo realizado por las mencionadas fuerzas en una trayectoria cerrada es nulo. En la práctica esto se traduce en que cualquier análisis de la interacción de un imán permanente con el paciente lleva rápidamente a la conclusión de que no existe ningún mecanismo que permita transmitir energía neta al paciente. La posible energía que pudiera entregar el campo cuando el paciente se acerque al imán, sería invariablemente recuperada cuando el paciente se aleje del mismo.



FORMULAS:







INDUCCION ELECTROMAGNETICA


La inducción electromagnética es el fenómeno que origina la producción de una fuerza electromotriz (f.e.m. o voltaje) en un medio o cuerpo expuesto a un campo magnético variable, o bien en un medio móvil respecto a un campo magnético estático. Es así que, cuando dicho cuerpo es un conductor, se produce una corriente inducida. Este fenómeno fue descubierto por Michael Faraday quién lo expresó indicando que la magnitud del voltaje inducido es proporcional a la variación del flujo magnético (Ley de Faraday).

Por otra parte, Heinrich Lenz comprobó que la corriente debida a la f.e.m. inducida se opone al cambio de flujo magnético, de forma tal que la corriente tiende a mantener el flujo. Esto es válido tanto para el caso en que la intensidad del flujo varíe, o que el cuerpo conductor se mueva respecto de é

formulas para la resolucion de induccion electromagnetica












motores de induccion electrica


CAMPO MAGNETICO

Para el álbum del músico francés Jean Michel Jarre, véase Les Chants Magnétiques.
Líneas mostrando el campo magnético de un imán de barra, producidas por limaduras de hierro sobre papel.
El campo magnético es una región del espacio en la cual una carga eléctrica puntual de valor q que se desplaza a una velocidad , sufre los efectos de una fuerza que es perpendicular y proporcional tanto a la velocidad como al campo, llamada inducción magnética o densidad de flujo magnético. Así, dicha carga percibirá una fuerza descrita con la siguiente igualdad.
(Nótese que tanto F como v y B son magnitudes vectoriales y el producto cruz es un producto vectorial que tiene como resultante un vector perpendicular tanto a v como a B). El módulo de la fuerza resultante será
La existencia de un campo magnético se pone de relieve gracias a la propiedad localizada en el espacio de orientar un magnetómetro (laminilla de acero imantado que puede girar libremente). La aguja de una brújula, que evidencia la existencia del
campo magnético terrestre, puede ser considerada un magnetómetro.

viernes, 16 de octubre de 2009

TRABAJO EN CLASE UNIDAD 3

CAMPO ELECTRICO

REGION DEL ESPACIO QUE REDEA A UNA CARGA ELECTRICA. LA MAGNITUD DEL CAMPO ELECTRICO PRODUCIDO POR UNA CAMPO DE FUERZA F, SOBRE UNA CARGA DE PRUEBA U SE OBTIENE:


1.- UNA CARGA DE (6X10)-6 C. SE INTRUDUCE A UNA REGION DONDE ACTUA UN CAMPO DE FUERZA .18N. CUAL ES LA INTENSIDAD DEL CAMPO ELECTRICO DE ESTAREGION?

E=F/Q .18/(6X10)-6 C.= 30000N/C


2.- EL CAMPO ELECTRICO UNA CIERTA REGION ES DE (5X10)20N/C. CUALCULA LA INTENSIDAD DE LA FUERZA QUE ACTUA SOBRE UN ELECTRON INVERSO EN ESTE CAMPO?

F= ((5X10)20N/C.)(1.6X10^19) =80N


3.- LA INTENSIDAD DE UNA CAPO ELECTRICO EN UNA CIERTA REGION ES DE 3X10^6 N/C. ¿CUAL ES LA MAGNITUD DE LA CARGA QUE EXPERIMENTA UNA FUERZA DE 12N?

Q=12/3X10^6=4X10^6



LEY DE OHM Y POTENCIAL ELECTRICO
LA INTENSIDAD DE CORRIENTE ELECTRICA QUE CIRCULA POR UN CONDUCTOR ES DIRECTAMENTE PROPORCIONAL AL VOLTAJE APLICADO A SUS ESTREMOS E INVERSAMENTE PROPORCIONAL A SU RESISTENCIA.

I=V/R
V=RI
R=V/I




CAMPO MAGNETICO:SE DEFINE COMO LA REGION DEL ESPACIO DONDE ACTUAN LINEAS DE FUERZA GENERADAS POR UN IMAN.

INDUCCION ELECTROMAGNETICA:EN EL AÑO DE 1831 EL CIENTIFICO INGLES MICHAEL FARADAY DESCUBRIO LAS CORRIENES ELECTRICAS ADUCIDAD APARTIR DE EXPERIMENTOS QUE REALIZO CON UNA BOBINA Y UN IMAN.LA INDUCCION ELECTROMAGNETICA DA COMO RESULTADO LA PRODUCCION DE UNA CORRIENTE INDUCIDA Y DE UNA FUERZA ELECTROMOTRIZ (FEM).

RELACION ENTRE EL CAMPO MAGNETICO Y EL CAMPO ELECTRICO:UN CAMPO MAGNETICO VARIABLE PRODUCE UN CAMPO ELECTRICO Y UN CAMPO ELECTRICO VARIABLE PRODUCE UN CAMPO ELECTRICO. LA MAGNITUD DE LA FUERZA QUE ACTUA SOBRE UNA CARGA Q QUE SE MUEVE CON UNA VELOCIDAD V, PRODUCIDA POR UN CAMPO ELECTRICO E , PERPENDICULAR TANTO A V Y A B. POR TANTO, LOS CAMPOS ELECTRICOS Y MAGNETICOS SE RELACIONAN DE LA SIGUIETE MANERA.

F=B.Q.V Y E=F/T

E=B.V

DONDE:
F= FUERZA SOBRE LA CARGA ELECTRICA
B=MAGNITUD DEL CAMPO ELECTRICO
Q= CARGA ELECTRICA
V= VELOCIDAD DE LA CARGA ELECTRICA
E= MMAGNITUD EEL CAMPO ELECTRICO

INDUCCION DE CAMPOS:CAMPO MAGNETICO INDUCIDO POR UN CONDUCTOR RECTO.
LA MAGNITUD DEL CAMPO MAGNETICO B INDUCIDO POR UN CONDUCTOR RECTO, POR EL QUE CIRCULA UNA INTENSIDAD DE CORRIENTE Y UNA DETERMINADA DISTANCIA DE DEL CONDUCTOR, SE OBTIENE CON LA SIGUIENTE FORMULA:

B=M.I/2πD

DONDE:
I=INTENSIDAD ( AMPERES)
D= DISTANCIA
B=MAGITUD DEL CAMPO MAGNETICO( TESLAS)
π=3.1416

-SI EL MEDIO QUE RODEA EL CONDUCTOR ES AIRE, ENTONCES
M=M0=4πX10-7

CAMPO MAGNETICO INDUCIDO POR UNA ESPIRA:UNA ESPIRA SE OBTIENE AL DOBLAR EN FORMA CIRCULAR UN CONDUCTOR RECTO. LA INTENSIDAD DEL CAMPO MAGNETIO. B PRODUCIO POR LA ESPIRA DE RARIO R POR LA QUE CIRUCLA UNA CORRIENE ELECTRICA I ES:

B=M.I/2R

CAMPOR MAGNETICO PRODUCIDO POR UNA BOBINA:UNA BOBINA RESULTA DE ENRROLLAR UN ALAMBRE ENCIERTO NUMJERO DE VECES VUELTA, LA INTENSIDAD DE CORRIENE I SE OBTIENE DE LA SIGUEINTE FORMULA.

B=N.M.I/WR

CAMPO MAGNETICO PRODUCIDO POR UN SOLENOIDE:UN SOLENOIDE SE FORMA AL ENRROLLAR UN ALAMBRE EN FORMA ELICOIDAL. LA INTESIDAD DEL CAMPO MAGNEICO B PRODUCIDO POR UN SOLENOIDE DE N VUELTAS Y LONGITUD L, POR EL QUE CIRCULA UNA INTENSIDAD DE CORRIENTE L SE OBTIENE:

B=N.M.I/L

1.-Dos resistencias de 6 y 4 OHM se encuentran conectados en serie a una diferencia de potencial de 120v ¿cual es la intencidad de corriente que circula por la resistencia?



I=V/R I=120/10=12 OHM



2.-Tres resistencias de 6,3 y 4 OHM se conectan en paralelo y una corriente total de 30A se distribuye entre las tres.¿cual es al diferencia de potencial aplicada al circuito?

.-1 DOS PROTONES EN UNA MOLECUAL ESTAN SEPARADOS PIR 3.8X10^-10

A) .-ENCUENTRA LA FUERZA ELECTROSTATICA EJERCIDA POR UN PROTON SOBRE OTRO.

B).-COMO SE COMPARA LA MAGNITUD DE ESTA FUERZA CON LA MAGNITUD DE LA FUERZA GRAVITACIONAL ENTRE DOS PROTONES.

C).-CUAL DEBE SE LA RAZON ENTRE LA CARGA Y LA MASA DE UNA PARTICULA ES IGUAL A LA MAGNITUD DE LA FUERZA ELECTROSTATICA ENTRE ELLAS

FE=(9X10^9)(1.6X10^-19)(1.6X10^-19)/ (3.80X10^-10)2= 1.59X10^-9

FG=(6.7X10^-11)( 1.67X10^-27) (1.67X10^-27)/ (3.80X10^-10)2= 1.23X10^-45 N



2.- EN LA FIGURA SE LOCALIZAN TRES CARGAS PUNTUALES UBICADAS EN LAS ESQUINAS DE UN TRIANGULO EQUILATERO CUALCULAR LA FUERZA ELECTRICA NETA SOBRE LA CARGA DE 7.0 UC
FE21=(9X10^9) (7X10^-6) (2X10^-6) / (.5)^2= .50344
FE23=(9X10^9) (7X10^6) (4X10^-6)=1.068
FE13=(9X10^9) (4X10^-6) (2X10^-6)=.2876
FX=-F13 + F23= .7192
FY=.50344


3.- CUATRO CARGAS PUNTUALES IDENTICAS Q=10 SE LOCALIZAN EN LAS ESQUINAS DE UN RECTANGULO, COMO SE INDICA EN LA FIGURA.LAS DIMENSIONES DEL RECTANGULO SON L=60 CM Y W=15.CALCULE LA MAGNITUD Y DIRECCION DE LA FUERZA ELECTRICA NETA EJERCIDA SOBRE LA CARGA EN LA ESQUINA IZQUIERDA INFERIOR POR LAS OTRAS 3 CARGAS.

F1,2= ((9X10^9) (10X10^-6))^2 / (.6)^2= 2.5 N
F1,3= ((9X10^9) (10X10^-6))^2 / (.15)^2=40 N
F2,3= ((9X10^9) (10X10^-6))^2 / (.61)^2=2.41 N
FT= 2.5-2.41-40= 44.91 N
H= RAIZ CUADRADA DE .6^2 MAS .15^2=.61m



4.- EN UN NUBARRON ES POSIBLE QUE HAYA UNA CARGA ELECTRICA DE 40C CERCA DE LA PARTE SUPERIOR Y=-40 C CERCA DE LA PARTE INFERIO ESTAS CARGAS ESTAN SEPARADAS POR APOXIMADAMENTE 2KM

¿Cuál ES LA FUERZA ELECTRICA ENTRE ELLAS?

FE= ((9X10^9) (40) (40)) / (2000)^2=3600000 N

viernes, 9 de octubre de 2009

FISICA II - Unidad II: Campos electroestáticos en el espacio material

Aunque los medios materiales estén generalmente descargados, están compuestos por cargas, y por lo tanto estas sentirán los efectos del campo aplicado. Como consecuencia de las fuerzas que el campo ejerce sobre los constituyentes, el estado del medio se apartara de la configuración de equilibrio. La respuesta del medio al campo eléctrico aplicado, dependerá del estado de las cargas del medio, es decir, de las fuerzas que mantengan ligadas a las cargas. Aunque todas las cargas del medio contribuyen a la respuesta del medio, la mayor contribución proviene de los electrones de valencia, que al estar débilmente ligados, se apartan más de la configuración de equilibrio que los electrones internos. Los núcleos debido a su mayor masa también tienen efectos mucho más débiles. La respuesta es pues característica de los electrones del medio. Esto permite utilizar el campo eléctrico como sonda, para obtener información sobre la estructura el medio. Es la base de numerosas técnicas espectroscópicas.


CONDUCTORES

Son materiales que tienen portadores de carga que pueden desplazarse ibremente, y que por consiguiente cuando se aplica un campo eléctrico se origina una corriente. Hay varios tipos: electrolíticos, metálicos y superconductores.










Al aplicar un campo externo, los electrones de valencia se mueven hasta llegar al equilibrio



Es un proceso dinámico.
Sin embargo los tiempo característicos de estos procesos en metales es 10-13 -10-14 s. si el campo externo varia mucho mas lentamente se puede considerar instantáneo.


CONDUCCION

Cuando el calor de propaga sin transporte real de la sustancia que forma el sistema, por medio de intercambios energéticos (choques) entre sus partículas integrantes (átomos, moléculas, electrones ...) se dice que se ha transmitido por conducción.
La cantidad de calor que fluye a través de un cuerpo por conducción depende del tiempo, del área a través de la cual fluye, del gradiente de temperatura y de la clase de material.












donde k es la conductividad térmica del material, A el área normal a la dirección del flujo de calor, t el tiempo y D T/D L es el gradiente de temperatura. El símbolo D T representa la diferencia de temperatura entre dos superficies paralelas distantes entre sí D L .

Existen grandes diferencias de conductividad térmica para distintos materiales.
Los gases tienen una conductividad muy pequeña. Igualmente, los líquidos son en general malos conductores. En el caso de los sólidos, la conductividad térmica varía de una forma extraordinaria, desde valores bajísimos, como en el caso de las fibras de amianto, hasta valores muy altos para l caso de los metales. Los materiales fibrosos, como el fieltro o el amianto, son muy malos conductores (buenos aislantes) cuando están secos ; si se humedecen, conducen el calor bastante bien. Una de las dificultades para el uso de estos materiales como aisladores es el mantenerlos secos.

MEDIOS DIELECTRICOS

Son materiales cuyos electrones de valencia están en estados localizados, sin movilidad. (cristales iónicos, covalentes, gases y líquidos). Por consiguiente cuando se les aplica un campo eléctrico no hay desplazamiento de carga. Son AISLANTES. Microscópicamente, en ausencia de campo, los centros de las cargas positivas y negativas coinciden, de forma que además de ser neutros, el momento dipolar de cualquier elemento de volumen que se considere es nulo. - En gases y líquidos polares (H2O, ClH,…), donde las moléculas tienen un momento dipolar intrínseco, es debido a que los dipolos están orientados de forma aleatoria, de forma que su suma en un volumen es nula. - En los cristales (iónicos o covalentes), y en gases o líquidos apolares (H2, N2, O2, CO2, C6H6, gases nobles, etc) esto es debido la simetría del sistema, ya que sus unidades estructurales (celdas unidad, átomos o moléculas) no tienen momento dipolar. al aplicar un campo externo a un medio dieléctrico, los centros de las cargas positivas y negativas de un volumen dado dejan de ser coincidentes, y por lo tanto en el medio se origina un momento dipolar. A este fenómeno se le llama POLARIZACION.


CONVECCIÓN

Cuando el calor se transmite por medio de un movimiento real de la materia que forma el sistema se dice que hay una propagación de calor por convección. Un ejemplo son: Los radiadores de agua caliente y las estufas de aire.
La transferencia de calor por corrientes de convección en un líquido o en un gas, está asociada con cambios de presión, debidos comúnmente a cambios locales de densidad. Un aumento de temperatura en un fluido va acompañado por un descenso de su densidad. Si aplicamos calor en la base de un recipiente, el fluido, menos denso en esta parte debido al calentamiento, será continuamente desplazado por el fluido más denso de la parte superior. Este movimiento que acompaña a la transmisión del calor se denomina convección libre. Ejemplos clásicos de convección son : el movimiento del viento sobre la tierra, la circulación del aguan en un sistema de calefacción doméstico. Algunas veces las diferencias de presión se producen mecánicamente mediante una bomba o un ventilador ; en tal caso, se dice que la conducción del calor ocurre por convección forzada. En ambos casos, el calor pasa hacia dentro o fuera de la corriente a lo largo del recorrido.
El método de las corrientes de convección es uno de los más eficaces de transferencia de calor y debe tenerse en cuenta cuando se diseñe o construya un sistema de aislamiento. Si se dejan en una casa grandes espacios sin paredes, se forman muy fácilmente corrientes de convección, produciéndose pérdidas de calor. Sin embargo, silos espacios se rompen en pequeños recintos, no son posibles las corrientes de convección y las pérdidas de calor por este método son muy pequeñas. Por esta razón, los materiales aislantes usados en las paredes de refrigeradores o en las de las casas son poroso : viruta de corcho, corcho prensado, lana de vidrio u otros materiales similares. Estos, no solamente son malos conductores por sí mismos, sino que dejan además pequeños espacios de aire, que son muy malos conductores y, al mismo tiempo, lo suficientemente pequeños para que no se produzcan corrientes de convección.

jueves, 8 de octubre de 2009

Una carga de (3x10)-6 y otra de (8x10)-6 cual es la magnitud de la fuerza de atracción entre las cargas.

Dos cargas electricas q1 y q2 se encuentran separadas d y experimentan una fuerza de repulsión de 40 N. Si la distancia entre las cargas se duplica ¿Cuál es la magnitud de la nueva fuerza de repulsión?
Fα = q/r²
F/r² = 40N (2)² = 40/4= 10N


CAMPO ELECTRICO

Región del espacio que rodea a una carga electrica. La magnitud del campo electrico producido por un campo de Fuerza F sobre una carga de prueba que se obtiene con la formula:
E = F/q
F= Magnitud del campo de fuerza "N"q= Carga de prueba "c"E= Magnitud del campo electrico "N/c"


La magnitud del campo electrico producido por una carga puntual que a una distancia d, de ella se obtiene con la formula:
E = K q/d²
E= Campo electrico "N/c"q= Carga electrica "c"d= Distancia "m"K= 9x109 N.m²/c²
Una carga de 5x10-6 c se introduce a una región donde actúa un campo de fuerza de 0.04 N. ¿Cuál es la intensidad del campo electrico en esa región?
E= k q/d²
E= F / q
E= 0.04 / 5x10-6
E= 8000 N/c

La magnitud del campo producido por una carga de 4x10-9 c a una distancia de 30 cm de su centro es?
k= 9x109 E= 9x109 (4x10)-9 / (o.3)²d= 0.3mq= 4x10-9 E= 400 N/c
ES UNA CARRERA DE 2 INDIVIDUOS



ES UNA CARRERA DE 2 INDIVIDUOS

problemas resueltos en clace

AUTO= 3.5 m Vcte= 20m CARRETERA= 20m CRUCE= 50m FRENA= -3.8m/s² ACELERA= 2.3 m/s² SEMAFORO AMARILLO= 3seg. af= -3.8 m/s² a= 2.3 m/s ² At= 3seg.



Suponer que acelera.... ¿ Logro el cruce en 3 seg?



TAREA

1.- Dados los vectores A= 2i - 3j - k y B= i + 4j - 2k hallar:a) A x Bb) A . Bc) A + Bd) A - Be) B x A















2.- Hallar el area del triangulo cuyos vertices son los puntos P(1,3,2) G(2,-1,1) R(1,2,3)a= PG= (1,-4,-1)=i-4j-k
b=PR= (0,-1,1)=-j+k
AxB= -4(1)i + (-1)(0)j + (1)(-1)k - (-4)(0)k + (-1)(-1)i + (1)(1)j
AxB= -4(1)i + (-1)(0)j + (1)(-1)k - J + J=
AxB= -5i + j - k

















3.- Determinar el vector unitario perpendicular al plano formado por A=2i - 6j - 3k y B = 4i + 3j - k






5.- Hallar el angulo formado por a) A= 3i + 2j - 6k y B= 4i - 3j + k















viernes, 2 de octubre de 2009

COORDENADAS CILINDRICAS

coordenadas cilindricas (r,ө,z) de un punto (x,y,z) esta definidas por:
x=r cosө y=r senө z=z

hallar las coordenadas cilindricas de (6,6,8)
Para expresar r, ө, z en función de x, y, z, y para asegurar que ө esta entre 0 y 2π podemos escribir=








3.-Una carga q1=7Mc, se localiza en el origen y una carga q2= -5Mc se hubica en el eje X a o.30 metros del origen. Encontrar el campo electrico en el punto P el cual tiene coordenadas (0.40)


El vector E1 tiene una componente Y el vector E2 tiene una componente X dada por:



trabajos hechos en clace

3.-Una carga q1=7Mc, se localiza en el origen y una carga q2= -5Mc se hubica en el eje X a o.30 metros del origen. Encontrar el campo electrico en el punto P el cual tiene coordenadas (0.40)



el vector E1 tiene una componente Y el vector E2tiene una componente X dada por: